#### THE LABORATORY MOUSE

Virginia Godfrey, DVM, PhD, DACVP University of North Carolina CL Davis, Raleigh 2010

#### Disclaimer

- This is not an ACLAM sanctioned presentation
- All information is deemed reliable and correct • No warranty for accuracy
- No information presented is known to be specifically included in the ACLAM Board Certification Exam

"Horse people are crazy......"





There is something about the outside of a horse that is good for the inside of a man. ~Winston Churchill



#### Vets Dealing with "Mousers"

- Talk the Talk .....
- Walk the Walk ....

#### Vets Dealing with "Mousers"

- Talk the Talk .....
  - Mouse genetics vocabulary
  - Scientific vocabulary
- Walk the Walk ....
  - Husbandry/colony management
  - Strain specific idiosyncrasies



"Humanized" mice

#### Vets Dealing with "Mousers"

- Talk the Talk .....
  - Mouse genetics vocabulary
    - Strain types, names/designations
    - · Genetic alteration methods and technologies
    - · Breeding strategies, problems, issues

# Talk the Talk .....

- http://www.informatics.jax.org/mgihome/no men/gene.shtml#genenom
- Guidelines for Nomenclature of Mouse and Rat Strains
- Quick Guide to Nomenclature for Genes
- Quick Guide to Nomenclature for Alleles and Mutations

#### Nomenclature

- Outbred Strain
- Inbred Strain
- Substrain
- F1 Hybrid
- Recombinant Inbred
- Congenic Strain & Coisogenic Strain

#### **Outbred Strain**

- · Genetically undefined; no two mice alike
- Bred to maintain maximum heterozygosity
- Long lived, resistant to disease, highly fertile
- Name = holding institution:strain name
  - Tac:ICR = ICR strain held by Taconic Farms

#### **Inbred Strain**

- · Mice within strain are genetically identical
- Requires minimum of 20 generations of brother x sister mating
- Name designated by capital letters and/or numbers: CBA, 129, C3H
- Generations of inbreeding: CBA (F87)

#### **Related Inbred Strain**

- Related inbred strains have a common origin but were genetically separated before F20
- Their names reflect this relationship: NZB, NZO

#### **Inbred Strains: Abbreviations**

| • C57BL/6 | B6 |  |
|-----------|----|--|
| • BALB/c  | С  |  |
| • C3H     | C3 |  |
| • DBA/1   | D1 |  |
| • C57L/J  | L  |  |
| • SWR     | SW |  |
|           |    |  |

#### Substrain

- Branches of an inbred strain with known or probable genetic differences
- Separated by 20 generations from a common ancestor
- Name designated by parent stock followed by "/" and substrain symbol
- Example: DBA/1 & DBA/2

#### F1 Hybrid

- Offspring of crossing two different inbred strains
- Female parent listed first, then male parent; abbreviations are often used
- B6D2/F1 = offspring of C57BL/6 female and DBA/2 male

#### **Recombinant Inbred Strains**

- Cross mice from two progenitor inbred strains, followed by 20 generations of brother x sister matings
- Named by combining strain abbreviation symbols (female parent first) linked by capital "X"
- CXB = RI strain from BALB/c x C57BL/6

#### **Alleles and Mutations**

- · Genes and alleles are italicized
- Spontaneous & Induced Alleles – Superscripted letters and numbers
  - Lowercase start = recessive (Wnt3avt)
  - Capital start = dominant (Atp7a<sup>Mo</sup>)

#### **Coisogenic Strain**

- Formed by mutation within an inbred strain
- Mice are <u>genetically identical EXCEPT</u> for the mutated gene
- Name is a compound symbol of: parent strain - gene symbol
- Example: MRL/MpJ Fas<sup>lpr</sup>/J

#### **Congenic Strain**

- Generated by repeated backcrosses to an inbred strain with selection of a particular marker from the donor strain
- Requires a minimum of 10 backcross generations
- Number of backcrosses: N(15)

#### **Congenic Strain**

- Name is a compound symbol = host strain.donor strain - gene symbol
- C57BL/6.AKR H2<sup>k</sup>
- Congenic mice are <u>genetically similar</u> to the host strain

#### CONGENIC **#** COISOGENIC!

- Congenic strains differ from the host strain by a short chromosomal segment, **NOT A SINGLE GENE**
- N5 congenic is >95% of host genetic background
- N10 is > 99% of host background

#### "Speed Congenics"

- Marker assisted selection breeding produces the equivalent of 10 backcross generations in as few as 5 generations
- Donor strain contribution unlinked to the selected locus is < 0.01
- Need careful selection and genomic spacing of markers

#### **Creating Transgenic Mice**

- Four types of mice are needed:
  - Donor females for zygote production
  - Fertile stud males
  - Sterile (vasectomized) males to create pseudopregnancies
  - Pseudopregmant females to serve as zygote recipients

#### **Construct for Transgenic Mice**

- · Gene of interest
- Promotor
  - endogenous
  - ubiquitous
  - tissue specific
  - inducible
  - developmentally regulated

# Transgenic MiceSuperovulate donor females and<br/>harvest embryosMicroinject pronucleus of mouse<br/>embryos with transgene constructCulture and implant transgenic<br/>embryos in pseudopregnant<br/>femalesSuperovulate donor femalesSuperovulate donor femaleSuperovulate donor female<

## Inbred Mice for Zygote Donors

- Pro:
  - Eggs of FVB strain have large pronuclei that facilitate microinjection
  - FVB strain has good reproductive performance
  - Transgene is placed in a defined genetic background

#### Inbred Mice for Zygote Donors

- Con
  - Most inbred mice reproduce poorly
    - females may respond poorly to superovulation
    - males may be inefficient breeders
  - Inbred mice are more expensive to buy/breed
  - Inbred mice may have strain-specific differences that interact deleteriously with the transgene

#### Hybrid Mice as Zygote Donors

• Pro:

- Good reproductive performance
- High egg survival rate
- Eggs efficiently retain microinjected DNA

#### Hybrid Mice as Zygote Donors

- Con:
  - Mixed genetic background
  - Creating a congenic strain will require minimum of 10 generations of backcrossing (<u>3-4 years</u>)

#### **Transgenic strains**

- Tg stock names spell out the features of the Tg manipulation
- On inbred background, designation is parent strain - Tg symbol
  - C57BL/6 TgR(ROSA26)26Sor
- On mixed background
  - B6,129 TgR(ROSA26)26Sor

#### **Transgenic Alleles**

- Tg(YYYY)#Zzzz
   YYYY = inserted gene
  - # = serial number
  - Zzzz = lab code
  - Example: Tg(Hoxa1)1Chm

#### **Creating Knockout Mice**

- Knockout construct with selectable marker
- Embryonic stem cell cultures (ES)
  - totipotent cells from inner cell mass of mouse blastocysts
  - 129 strain is source of most ES cell lines
- Blastocysts from B6 mice
- Pseudopregnant females









#### **Targeted (KO) Alleles**

- tm#Zzzz
   tm = targeted mutation
  - # = serial number
  - Zzzz = lab code
  - Example: Egfrtm1Mag

#### **Limitations of Mouse Models**

- Mice ain't people....
  - − Same mutation → different phenotype
     − HPRT − Lesch-Nyhan syndrome in humans, no disease in KO mice
  - Same mutation  $\rightarrow$  "similar" phenotype - Apc (Min) - colon cancer in people, SI polyps in mice
  - Accentuation of mouse lesions
     p53 carcinomas in people, sarcomas in mice

#### **Accentuation of Mouse Lesions**

 Gastric/duodenal polyps







#### **Current Issues with GE Mice**

- · Lack of resources for "phenotyping"
  - Trained veterinary personnel
  - Pathologists, clinicians
  - Specialized equipment
    - Faxitron, Micro-CT, rodent behavior, DEXA
  - Core labs
    - Histology, clinical pathology

#### **Current Issues with GE Mice**

- Separating phenotype from:
  - Strain-specific lesions
  - Infectious disease
- Opportunistic infections in "clean" mice
- Humane considerations in lethal models
  - Endpoints
  - Standards of care

## Case Study 1

- Unexpected liver tumors seen at necropsy in mice transgenic for a clotting factor
- Lesions noted only in males > 1 yr. of age
- Some non-Tg control males also have the tumors

## **Strain-specific Variations**

- Liver tumors seen at necropsy in mice transgenic for a clotting factor
- Origin of the strain is
   B6xC3/F1 hybrid; C3H
   males are predisposed
   to liver tumors



## Case Study 2

- "Sores" noted on genitalia of female KO
  mice
- PI complains that females with "sores" are not breeding

#### **Strain-specific Variations**

- "Sores" noted on genitalia of female KO mice
- Mice are coisogenic on the 129 strain; females are prediposed to vulvar squamous cell carcinomas





#### Infectious Disease Issues

- Atypical presentations of classic diseases
- Cross-breeding immune deficient mice
- Colony/experiment specific problems
  - Improper husbandry
  - Improper experimental technique

#### **Case Study 3**



- Ordinary B6 inbred mice arrive from a vendor
- Within 1 week, all of the shipment develops lesions on their paws
- Do You Panic?

#### **Atypical Disease Presentation**



- Beta-hemolytic *Staph. aureus* cultured from paws
- No serologic evidence of Ectromelia infection
- Sigh of relief!



#### Wasting from.....

- Pneumocystis murina pneumonia
- Helicobacter- induced colitis
- Cystitis/pyelonephritis
- Tumor-induced cachexia
- MHV infection



#### Case Study 4

- GE breeder mice are purchased from commercial vendor
- Mice presented for necropsy because of poor reproduction and numerous early deaths

# Case Study 4

- Mice are emaciated, dyspneic, lethargic
- Lungs do not collapse when thorax is opened, appear white, dry and leathery



#### **Case Study 4**

- Histopathology reveals pyogranulomatous pneumonia with regional infarction.
- Fungal hyphae found on histopathology, Aspergillus terreus cultured from lungs



#### B6.129S-Cybbtm1Din/J Mice

- "PHOX -/-" mice are a model for chronic granulomatous disease in humans
- Phagocytic cells are <u>incapable</u> of creating a respiratory burst, fail to kill bacteria
- Vendor recommended sterile housing; Pl requested conventional housing on the order

#### Improper Husbandry

- Strain name ""B6.129S6-Cybb<sup>tm1Din</sup>/J" was unfamiliar to animal husbandry; no recognition as immune-deficient
- A. terreus grows beautifully on damp, nonautoclaved corn cob bedding!

#### **Case Study 5**

- Complaint of poor reproductive performance in breeder mice
  - Infertile pairs
  - High incidence of prepucial gland abscesses

#### **Poor Experimental Technique**

- Complaint of poor reproductive performance
  - benomance
  - Pyometra due to Pasteurella pneumotrophica
  - Mice are mildly immune deficient
  - Estrus monitor used for multiple mice without cleaning
  - Breeders more than 1 year old



#### **Poor Experimental Technique**

- Induction models Tamoxifen/ER
  - Gavage errors
  - Sclerosing aseptic peritonitis





#### **Know Your Mouse Genetics?**

GE mice dying unexpectedly soon

Hi Dr. Godfrey, Here is the genotyping info on those mice you dissected:

#192665 (08-030): K18eGT121+/-;Xpten+/m;PbCre4+/- DOB:10/2/07 #193345 (08-031): K18eGT121+/-;Xpten+/m;PbCre4+/- DOB: 10/9/07 #191933 (08-032): APT121+/-; p53f/f; FSPCre+/- DOB: 9/19/07 #197207 (08-033): p53f/f; FSPCre+/- DOB: 11/28/07 #195974 (08-034): APT121+/-; p53f/+; FSPCre+/- DOB: 11/13/07 #193121 (08-035): K5eGT121+/-;PbCre4+/- DOB: 10/3/07

# Hi Dr. Godfrey, Sorry for not explaining it well.....

K18eGT121 – BAC transgenic. K18 promoter (whole K18 gene in a BAC) drives floxed eGFP stop T121. Without Cre, eGFP is expressed. With Cre, T121 will be activated. K5eGT121. BAC transgenic. K5 promoter (whole K5 gene in a BAC) drives floxed eGFP stop T121. Without Cre, eGFP is expressed. With Cre, T121 will be activated.

Xpten+/m = floxed Pten allele (or mutant allele, conditional KO mice). Only one allele is floxed, the other allele is wildtype.

PbCre4 = Probasin promoter drives Cre. This line intended to be used for prostate specific deletion. However, it is not prostate specific. Thymus has very low expression of Cre.

FSP Cre – FSP (fibroblast specific protein) promoter is driving Cre. This intends to be FSP specific. However, I have evidence that epithelial cells also express Cre in this line.

p53f/f-floxed p53 (conditional p53 KO mice). Both alleles are floxed.

APT121 - probasin promoter drive T121 directly (transgenic).

# Hi Dr. Godfrey, Sorry for not explaining it well.....

K18cGT121 = BAC transgenie. K18 promoter (whole K18 gene in a BAC) drives floxed eGFP stop T121. Without Cre, eGFP is expressed. With Cre, T121 will be activated. K5eGT121 = BAC transgenie. K5 promoter (whole K5 gene in a BAC) drives floxed eGFP

stop T121. Without Cre, cGFP is expressed. With Cre, T121 will be activated. Xpten+/m = floxed Pten allele (or mutant allele, conditional KO mice). Only one allele is

floxed, the other allele is wildtype.

PbCre4 = Probasin promoter drives Cre. This line intended to be used for prostate specific deletion. <u>However, it is not prostate specific. Thymus has very low expression of Cre.</u>

FSP Cre = FSP (fibroblast specific protein) promoter is driving Cre. This intends to be FSP specific. However, I have evidence that epithelial cells also express Cre in this line.

p53f/f - floxed p53 (conditional p53 KO mice). Both alleles are floxed.

APT121 = probasin promoter drive T121 directly (transgenic).

#### Thymus has low expression....



# Hi Dr. Godfrey, Sorry for not explaining it well.....

K18eGT121 – BAC transgenic. K18 promoter (whole K18 gene in a BAC) drives floxed eGFP stop T121. Without Cre, eGFP is expressed. With Cre, T121 will be activated.

K5cGT121 = BAC transgenic. K5 promoter (whole K5 gene in a BAC) drives floxed eGFP stop T121. Without Cre, eGFP is expressed. With Cre, T121 will be activated.

Xpten+/m = floxed Pten allele (or mutant allele, conditional KO mice). Only one allele is floxed, the other allele is wildtype.

PbCre4 = Probasin promoter drives Cre. This line intends to be used for prostate specific deletion.

FSP Cre = FSP (libroblast specific protein) promoter is driving Cre. This intends to be FSP specific. However, I have evidence that epithelial cells also express Cre in this line.

p53f/f = floxed p53 (conditional p53 KO mice). Both alleles are floxed.

APT121 = probasin promoter drive T121 directly (transgenie).



#### Humane Issues with GEM

- Lethal mutations
  - What is the "pain and distress" category?
  - Where do you set the endpoints?
    - When should the mouse be referred for vet care
    - · When should euthanasia be mandated
  - What level of supportive care is required?

# Humane Endpoints

Autoimmune mice
 with chronic





# Humane Endpoints

Leukemia/lymphoma models



